Deep Variational Inference Without Pixel-Wise Reconstruction

نویسندگان

  • Siddharth Agrawal
  • Ambedkar Dukkipati
چکیده

Variational autoencoders (VAEs), that are built upon deep neural networks have emerged as popular generative models in computer vision. Most of the work towards improving variational autoencoders has focused mainly on making the approximations to the posterior flexible and accurate, leading to tremendous progress. However, there have been limited efforts to replace pixel-wise reconstruction, which have known shortcomings. In this work, we use real-valued non-volume preserving transformations (real NVP) to exactly compute the conditional likelihood of the data given the latent distribution. We show that a simple VAE with this form of reconstruction is competitive with complicated VAE structures, on image modeling tasks. As part of our model, we develop powerful conditional coupling layers that enable real NVP to learn with fewer intermediate layers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards Deeper Understanding of Variational Autoencoding Models

We propose a new family of optimization criteria for variational auto-encoding models, generalizing the standard evidence lower bound. We provide conditions under which they recover the data distribution and learn latent features, and formally show that common issues such as blurry samples and uninformative latent features arise when these conditions are not met. Based on these new insights, we...

متن کامل

PlaneNet: Piece-wise Planar Reconstruction from a Single RGB Image

This paper proposes a deep neural network (DNN) for piece-wise planar depthmap reconstruction from a single RGB image. While DNNs have brought remarkable progress to single-image depth prediction, piece-wise planar depthmap reconstruction requires a structured geometry representation, and has been a difficult task to master even for DNNs. The proposed end-to-end DNN learns to directly infer a s...

متن کامل

Autoencoding beyond pixels using a learned similarity metric

We present an autoencoder that leverages learned representations to better measure similarities in data space. By combining a variational autoencoder with a generative adversarial network we can use learned feature representations in the GAN discriminator as basis for the VAE reconstruction objective. Thereby, we replace element-wise errors with feature-wise errors to better capture the data di...

متن کامل

A New Modification of the Reconstruction of Variational Iteration Method for Solving Multi-order Fractional Differential Equations

Fractional calculus has been used to model the physical and engineering processes that have found to be best described by fractional differential equations. For that reason, we need a reliable and efficient technique for the solution of fractional differential equations. The aim of this paper is to present an analytical approximation solution for linear and nonlinear multi-order fractional diff...

متن کامل

Deep Variational Bayes Filters: Unsupervised Learning of State Space Models from Raw Data

We introduce Deep Variational Bayes Filters (DVBF), a new method for unsupervised learning and identification of latent Markovian state space models. Leveraging recent advances in Stochastic Gradient Variational Bayes, DVBF can overcome intractable inference distributions via variational inference. Thus, it can handle highly nonlinear input data with temporal and spatial dependencies such as im...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1611.05209  شماره 

صفحات  -

تاریخ انتشار 2016